Third Semester B.E. Degree Examination, June-July 2009 **Logic Design**

Max. Marks:100 Time: 3 hrs.

> Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

Express the P. O. S. equations in a Maxterms list (decimal notations) form. (04 Marks)

i) $T = f(a, b, c) = (a + \overline{b} + c)(a + \overline{b} + c)(\overline{a} + \overline{b} + c)$

ii) $J=f(A,B,C,D)=(A+\overline{B}+C+D)(A+\overline{B}+C+\overline{D})(\overline{A}+B+C+D)(\overline{A}+\overline{B}+C+D)(\overline{A}+B+\overline{C}+D)(\overline{A}+\overline{B}+\overline{C}+D)$

Reduce the following function using K-map technique and implement using gates. (10 Marks)

i) $f(P, Q, R, S) = \Sigma m (0, 1, 4, 8, 9, 10) + d(2, 11)$

ii) $f(A, B, C, D) = \pi M (0, 2, 4, 10, 11, 14, 15)$

Design a logic circuit with inputs P, Q, R so that output S is high whenever P is zero or whenever Q = R = 1. (06 Marks)

Ling Quine Mccluskey Method and simply the following function.

 $f(a, b, c, d) = \sum m(0, 1, 2, 3, 8, 9)$

(10 Marks)

(10 Marks)

06ES33

b. Write the Map entered variable K-map for the Boolean function.

 $f(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum m(2, 9, 10, 11, 13, 14, 15)$

a. Implement following multiple output function using 74LS138 and extend gates.

 $F_1(A, B, C) = \Sigma m (1, 4, 5, 7)$

 $F_2(A, B, C) = \pi M(2, 3, 6, 7)$ (06 Marks)

b. Implement full subtractor using decoder and write a truth table.

(08 Marks)

Write a note on encoders.

A State of Beredical

(2)

以)

(06 Marks) (12 Marks)

Design 2-bit comparator using gates.

b. Implement the following Boolean function using 8:1 multiplexer.

 $F(A, B, C, D) = \overline{ABD} + ACD + \overline{BCD} + \overline{ACD}$

(08 Marks)

PART - B

2 Clearly distinguish between

ii Synchronous and asynchronous circuits.

ii) Combinational and sequential circuits (06 Marks)

Explain the operation of clocked SR flip-flop.

(08 Marks)

What is race around condition? Discuss in detail.

(06 Marks)

Draw the logic diagrams for (i) SR latch (ii) Master - slave JK flip-flop (iii) Master-slave SR flip-flop. (06 Marks)

Explain the working of 4-bit asynchronous counter.

(06 Marks)

Explain Johnson counter with its circuit diagram and timing diagram.

(08 Marks)

Explain with suitable logic and timing diagram.

i) Serial-in serial-out shift register.

ii) Parallel-in parallel-out shift register.

(10 Marks)

Explain the Meoly model and Moore model for clocked synchronous sequential network.

(10 Marks)

Compare Moore and Meelay models.

(04 Marks)

Design a synchronous counter using JK flip-flops to count in the sequence 21245.6.0,1.2..... Use state diagram and state table. (12 Marks) (04 Marks) Scale the rules for state assignments.